Cancers | |
Epigenetic-Like Stimulation of Receptor Expression in SSTR2 Transfected HEK293 Cells as a New Therapeutic Strategy | |
Joerg Kotzerke1  Lisa Huebinger1  Robert Freudenberg1  Claudia Brogsitter1  Dorothee Buesser1  Roswitha Runge1  Anne Naumann1  Andrea Kliewer2  | |
[1] Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany;Department of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, Germany; | |
关键词: neuroendocrine tumors; peptide receptor radionuclide therapy; somatostatin receptor type 2; SSTR2; Lu-177-DOTATATE; valproic acid; | |
DOI : 10.3390/cancers14102513 | |
来源: DOAJ |
【 摘 要 】
The aim of the study was to increase the uptake of the SSTR2-targeted radioligand Lu-177-DOTATATE using the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The HEKsst2 and PC3 cells were incubated with variable concentrations of 5-aza-dC and VPA to investigate the uptake of Lu-177-DOTATATE. Cell survival, subsequent to external X-rays (0.6 or 1.2 Gy) and a 24 h incubation with 57.5 or 136 kBq/mL Lu-177-DOTATATE, was investigated via colony formation assay to examine the effect of the epidrugs. In the case of stimulated HEKsst2 cells, the uptake of Lu-177-DOTATATE increased by a factor of 28 in comparison to the unstimulated cells. Further, stimulated HEKsst2 cells demonstrated lower survival fractions (factor 4). The survival fractions of the PC3 cells remained almost unchanged. VPA and 5-aza-dC did not induce changes to the intrinsic radiosensitivity of the cells after X-ray irradiation. Clear stimulatory effects on HEKsst2 cells were demonstrated by increased cell uptake of the radioligand and enhanced SST2 receptor quantity. In conclusion, the investigated approach is suitable to stimulate the somatostatin receptor expression and thus the uptake of Lu-177-DOTATATE, enabling a more efficient treatment for patients with poor response to peptide radionuclide therapy (PRRT).
【 授权许可】
Unknown