期刊论文详细信息
Frontiers in Immunology
Interkingdom Cross-Talk in Times of Stress: Salmonella Typhimurium Grown in the Presence of Catecholamines Inhibits Porcine Immune Functionality in vitro
Lena Reiske1  Sonja S. Schmucker1  Volker Stefanski1  Birgit Pfaffinger1  Julia Steuber2  Charlotte Toulouse2 
[1] Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany;Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany;
关键词: Salmonella Typhimurium;    catecholamines;    adrenaline;    adrenochrome;    pig;    stress;   
DOI  :  10.3389/fimmu.2020.572056
来源: DOAJ
【 摘 要 】

In stressful situations, catecholamines modulate mammalian immune function, and in addition, they can be sensed by many bacteria. Catecholamine sensing was also found in the zoonotic gut pathogen Salmonella Typhimurium, probably contributing to the stress-induced increased risk of salmonellosis. Virulence traits such as proliferation and invasiveness are promoted upon bacterial catecholamine sensing, but it is unknown whether S. Typhimurium may also inhibit mammalian immune function in stressful situations. We thus investigated whether supernatants from S. Typhimurium grown in the presence of catecholamines modulate porcine mitogen-induced lymphocyte proliferation. Lymphocyte proliferation was reduced by supernatants from catecholamine-exposed Salmonella in a dose-dependent manner. We further examined whether adrenaline oxidation to adrenochrome, which is promoted by bacteria, could be responsible for the observed effect, but this molecule either enhanced lymphocyte functionality or had no effect. We could thereby exclude adrenochrome as a potential immunomodulating agent produced by S. Typhimurium. This study is the first to demonstrate that bacteria grown in the presence of catecholamine stress hormones alter their growth environment, probably by producing immunomodulating substances, in a way that host immune response is suppressed. These findings add a new dimension to interkingdom signaling and provide novel clues to explain the increased susceptibility of a stressed host to Salmonella infection.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次