Applied Sciences | |
An Early Study on Imaging 3D Objects Hidden Behind Highly Scattering Media: a Round-Trip Optical Transmission Matrix Method | |
Guangzhi Zhao1  Bin Zhuang1  Liyong Ren1  Yi Geng1  Hui Chen1  Zhengquan He1  Chengfang Xu1  | |
[1] Research Department of Information Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; | |
关键词: round-trip imaging; scattering media; 3D imaging; transmission matrix; | |
DOI : 10.3390/app8071036 | |
来源: DOAJ |
【 摘 要 】
Imaging an object hidden behind a highly scattering medium is difficult since the wave has gone through a round-trip distortion: On the way in for the illumination and on the way out for the detection. Although various approaches have recently been proposed to overcome this seemingly intractable problem, they are limited to two-dimensional (2D) intensity imaging because the phase information of the object is lost. In such a case, the morphological features of the object cannot be recovered. Here, based on the round-trip optical transmission matrix of the scattering medium, we propose an imaging method to recover the complex amplitude (both the amplitude and the phase) information of the object. In this way, it is possible to achieve the three-dimensional (3D) complex amplitude imaging. To preliminarily verify the effectiveness of our method, a simple virtual complex amplitude object has been tested. The experiment results show that not only the amplitude but also the phase information of the object can be recovered directly from the distorted output optical field. Our method is effective to the thick scattering medium and does not involve scanning during the imaging process. We believe it probably has potential applications in some new fields, for example, using the scattering medium itself as an imaging sensor, instead of a barrier.
【 授权许可】
Unknown