期刊论文详细信息
Sustainability
Exploration of Hydrogeochemical Characterization and Assessment of Organic Pollution Characteristics of Shallow Groundwater near a Chemical Plant That Discharged Sewage Illegally
Guangya Zhou1  Qiang Wu2  Hao Zhan2  Benhua Liu3 
[1] China State Construction Engineering Corporation, Jinan 250101, China;College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China;School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;
关键词: groundwater;    hydrogeochemistry;    organic pollution;    chemical plant;    sustainable management;   
DOI  :  10.3390/su14020660
来源: DOAJ
【 摘 要 】

Groundwater plays a significant role in domestic use and agricultural irrigation in rural areas of northern China. The untreated wastewater from the chemical plant was directly discharged into a seepage well, resulting in the pollution of groundwater. Assessing characteristics of groundwater organic pollution and identifying evolutionary mechanisms of hydrogeochemistry are beneficial for groundwater protection and sustainable management. Statistical methods (correlation analysis (CA) and principal component analysis (PCA)) combined with hydrogeochemical methods including Piper, Gibbs, Gaillardet, and ions binary diagrams and the chloride alkalinity index were employed to explore hydrogeochemical characteristics and evolutionary mechanisms. The results showed that cations were predominantly located at the Ca2+ end and anions were mostly close to the SO42− and Cl end. The ion concentrations of groundwater were mainly affected by water–rock interactions. The weathering or dissolution of silicate (i.e., aluminosilicate minerals), evaporite (i.e., halite and gypsum), carbonate minerals (i.e., calcite and dolomite), cation exchange, and anthropogenic activities contribute to the chemical compositions of groundwater. Based on CA and PCA, the dissolution of halide minerals and the use of pesticides and fertilizers were the main factors controlling water chemistry. Additionally, the dissolution of sulfur-bearing minerals and gypsum was the key factor controlling the concentrations of Ca2+ and Mg2+. Application of mathematical statistical methods characterized that the exceedance rate of seven organic compounds with high detection rates were as follows: carbon tetrachloride (39.83%) > 1,1,2-trichloroethane (28.81%) > chloroform (10.17%) > trichloroethene (6.78%) > 1,1,2,2-tetrachloroethane (5.93%) > perchloroethylene (5.08%) > trichlorofluoromethane (0.85%). Simultaneously, pollution under the influence of volatilization and diffusion was significantly less than that in the direction of groundwater runoff.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次