期刊论文详细信息
Majallah-i Dānishkadah-i Pizishkī-i Dānishgāh-i ̒ Ulūm-i Pizishkī-i Mashhad.
استفاده از شبکه‌های عصبی یادگیری عمیق در تشخیص درجه بدخیمی سرطان پروستات و تشخیص سرطان سینه
حسن فرسی1  سجاد محمدزاده2  صابر فولادی3 
[1] استاد، دانشکده برق و کامپیوتر، دانشگاه بیرجند، بیرجند;استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه بیرجند، بیرجند، ایران;دانشجوی کارشناسی ارشد، دانشکده برق و کامپیوتر، دانشگاه بیرجند، بیرجند;
关键词: یادگیری عمیق;    سرطان پروستات;    سرطان سینه;    استخراج ویژگی;   
DOI  :  10.22038/mjms.2018.13301
来源: DOAJ
【 摘 要 】

مقدمه در سال­های اخیر علاقه به پژوهش در زمینه به­کارگیری الگوریتم­های هوشمند در تشخیص و طبقه­بندی بیماری­ها به ویژه سرطان، به شدت افزایش یافته است. طبقه­بندی تومور یک کار مهم در تشخیص پزشکی محسوب می­شود. روش­های محاسبات نرم­افزاری به دلیل عملکرد طبقه‌بندی آنها در تشخیص بیماری­های پزشکی اهمیت زیادی دارند. تشخیص و طبقه­بندی تصاویر پزشکی یک کار چالش برانگیز است. روش کار برای تشخیص درجه بدخیمی سرطان پروستات و خوش­خیم یا بد­خیم بودن سرطان سینه از طبقه­بندی کننده شبکه عصبی عمیق به کمک فریمورک تنسورفلو و بهره­گیری از کتابخانه کراس استفاده شده است. در مرحله آموزش، تصاویر آموزشی به همراه کلاس خروجی آن برای شبکه در نظر گرفته می­شود. حین آموزش وزن­های فیلتر در هر تکرار به­روز می­شوند. به­نحویکه بعد از چندین تکرار وزن‌های بهینه به­روز می­شوند و شبکه آموزش می­بیند تا بهترین ویژگی را از تصاویر استخراج کند. نتایج روش پیشنهادی در این تحقیق که بر پایه شبکه های عصبی عمیق است، با توجه به استخراج ویژگی های موثرتر و دقیق تر، دقت تشخیص 83/95 %و 5/99 %به ترتیب در سرطان سینه و سرطان پروستات را فراهم می آورد که نسبت به روش های موجود باعث افزایش بیش از 7% در دقت تشخیص گردیده است.   نتیجه­گیری سرطان یکی از شایع­ترین بیماری­های پیش­رونده در جهان است. سرطان در سلول­ها آغاز می­شود که پایه­های ساختمانی اولیه هستند که بافت را تشکیل می­دهند. یکی از چالش­های موجود در تکنیک­های تشخیص تصاویر پزشکی، مشکل در تجزیه و تحلیل بافت­های متراکم است. با توجه به اینکه تشخیص توسط انسان زمان­بر و دارای احتمال خطای بیشتری است، محققان در تلاش بوده­اند تا با الگوریتم­های مختلف تشخیص را به صورت اتوماتیک انجام دهند.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次