期刊论文详细信息
Molecules
Monitoring and Statistical Analysis of Formation of Organochlorine and Organobromine Compounds in Drinking Water of Different Water Intakes
IlyaI. Beloliptsev1  YuliaS. Vozhdaeva2  EvgeniyA. Kantor3  AlbertT. Lebedev4  AlfiyaR. Kholova5  IgorA. Melnitskiy5  MargaritaYu. Vozhdaeva5 
[1] Department of Mathematics and Computer Science, Ufa Branch, Financial University, Mustaia Karima St. 69/1, Ufa 450015, Russia;Department of Mechanics and Mathematics, St. Petersburg State University, Universitetskaia Emb. 7/9, Saint-Petersburg 199034, Russia;Department of Petrochemistry and Chemical Technology, Department of Physics, Ufa State Petroleum Technical University, Kosmonavtov St. 1, Ufa 450000, Russia;Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gori 1/3, Moscow 119991, Russia;State Unitary Enterprise “Ufavodokanal”, Water Treatment Station, Rossiyskaya St. 157/2, Ufa 450098, Russia;
关键词: brominated DBP;    chlorinated DBP;    THM;    HAA;    SVOC;    GC-MS;   
DOI  :  10.3390/molecules26071852
来源: DOAJ
【 摘 要 】

The main drawback of drinking water chlorination involves the formation of quite hazardous disinfection by-products (DBPs), represented mainly by halogenated species. Based on the authors’ monitoring data since 2002, the prevalence of chlorine over bromine in the composition of volatile DBPs was shown for the drinking water in Ufa (Russia). However, the situation was completely reversed in the case of semi-volatile DBPs. The principal goal of the present study involved rationalization of the results of the long-term monitoring. Gas chromatography–mass spectrometry (GC-MS) was used for the qualitative and quantitative analysis of volatile DBPs. Identification of semi-volatile compounds was carried out with GC-MS, while gas chromatography with an atomic emission detector (GC-AED) was used for their quantification. A significant contribution of oxygen to the composition of semi-volatile compounds proves the decisive role of the dissolved organic matter oxidative destructive processes. Statistical analysis revealed notable linear correlations for trihalomethane and haloacetic acid formation vs. chlorine dose. On the contrary, halogenated semi-volatile products do not demonstrate any correlations with the water quality parameters or chlorine dose. Principal component analysis (PCA) placed them into separate groups. The results allow for proposing that formation of the organohalogenated species involved the fast penetration of bromine into the humic matter molecules and, further, their oxidative destruction by active chlorine.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次