Genes | |
Neo-Domestication of an Interspecific Tetraploid Helianthus annuus × Helianthus tuberous Population That Segregates for Perennial Habit | |
Sariel Hüber1  Greg Baute1  DanG. Bock1  LorenH. Rieseberg1  Matthew Ott2  Kevin Betts2  RobertM. Stupar2  Donald Wyse2  Adam Herman3  Yaniv Brandvain3  MichaelB. Kantar4  | |
[1] Biodiversity Research Centre and Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, BC V6T 1Z4, Canada;Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA;Department of Plant and Microbial Biology, 123 Snyder Hall, 1475 Gortner Ave, Saint Paul, MN 55108, USA;Department of Tropical Plant & Soil Sciences, St. John Plant Science Lab, Room 102, 3190 Maile Way, Honolulu, HI 96822, USA; | |
关键词: domestication syndrome; sustainable agriculture; rapid evolution; perenniality; | |
DOI : 10.3390/genes9090422 | |
来源: DOAJ |
【 摘 要 】
Perennial agriculture has been proposed as an option to improve the sustainability of cropping systems, by increasing the efficiency of resource use, while also providing ecosystem services. Neo-domestication, the contemporary domestication of plants that have not previously been used in agriculture, can be used to generate new crops for these systems. Here we explore the potential of a tetraploid (2n = 4x = 68) interspecific hybrid sunflower as a perennial oilseed for use in multifunctional agricultural systems. A population of this novel tetraploid was obtained from crosses between the annual diploid oilseed crop Helianthus annuus (2n = 2x = 34) and the perennial hexaploid tuber crop Helianthus tuberosus (2n = 6x = 102). We selected for classic domestication syndrome traits for three generations. Substantial phenotypic gains were made, in some cases approaching 320%. We also analyzed the genetic basis of tuber production (i.e., perenniality), with the goal of obtaining molecular markers that could be used to facilitate future breeding in this system. Results from quantitative trait locus (QTL) mapping suggest that tuber production has an oligogenic genetic basis. Overall, this study indicates that substantial gains towards domestication goals can be achieved over contemporary time scales.
【 授权许可】
Unknown