期刊论文详细信息
Stem Cell Research & Therapy
Small extracellular vesicles from dental follicle stem cells provide biochemical cues for periodontal tissue regeneration
Jiangtian Hu1  Nanquan Rao2  Hui Jiang2  Liya Ma2  Yuzhe Dai2  Songtao Yang2  Hefeng Yang2 
[1] Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University;Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University;
关键词: Small extracellular vesicles;    Dental follicle stem cells;    Periodontal ligament stem cells;    Periodontal tissue regeneration;   
DOI  :  10.1186/s13287-022-02767-6
来源: DOAJ
【 摘 要 】

Abstract Background Treatments based on stem cell-derived small extracellular vesicles (sEVs) have been explored as an alternative to stem cell transplantation-based therapies in periodontal regeneration. Dental follicle stem cells (DFSCs) have shown great potential for regenerative medicine applications. However, it is unclear whether sEVs derived from DFSCs (DFSCs-sEVs) could be used in periodontal regeneration. This study investigates whether DFSCs-sEVs could regenerate damaged periodontal tissue and the potential underlying mechanism. Methods DFSCs-sEVs were isolated and identified, and periodontal ligament stem cells (PDLSCs) were cocultured with the isolated sEVs. The effect of DFSCs-sEVs on the biological behaviour of PDLSCs was examined using EdU assay, CCK-8 assay, cell cycle analysis, wound healing, alizarin red staining, qRT-PCR, and western blot analysis. RNA sequencing and functional enrichment analysis were used to detect the signal pathway involved in the effect of DFSCs-sEVs on PDLSCs. PDLSCs were pretreated with ERK1/2 or p38 MAPK inhibitors to investigate the possible involvement of the ERK1/2 and p38 MAPK pathways. Additionally, DFSCs-sEVs were combined with collagen sponges and transplanted into the periodontal defects in SD rats, and then, pathological changes in periodontal tissue were examined using haematoxylin and eosin (HE) staining and micro-CT. Results PDLSCs could internalize DFSCs-sEVs, thereby enhancing the proliferation assessed using EdU assay, CCK-8 assay and cell cycle analysis. DFSCs-sEVs significantly enhanced the migration of PDLSCs. DFSCs-sEVs promoted osteogenic differentiation of PDLSCs, showing deep Alizarin red staining, upregulated osteogenic genes (RUNX2, BSP, COL1), and upregulated protein expression (RUNX2, BSP, COL1, ALP). We found that p38 MAPK signalling was activated via phosphorylation. Inhibition of this signalling pathway with a specific inhibitor (SB202190) partially weakened the enhanced proliferation. After DFSCs-sEVs transplantation, new periodontal ligament-like structures and bone formation were observed in the damaged periodontal area in rats. Labelled DFSCs-sEVs were observed in the newly formed periodontal ligament and soft tissue of the defect area. Conclusions Our study demonstrated that DFSCs-sEVs promoted periodontal tissue regeneration by promoting the proliferation, migration, and osteogenic differentiation of PDLSCs. The effect of DFSCs-sEVs in promoting PDLSCs proliferation may be partially attributed to the activation of p38 MAPK signalling pathway. DFSCs-sEVs provide us with a novel strategy for periodontal regeneration in the future.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次