期刊论文详细信息
Frontiers in Earth Science
Changes in Flood Regime of the Upper Yangtze River
Xin Wen1  Ziyu Ding1  Yu Zhang1  Guohua Fang1  Xin Li1  Zhengyang Tang3  Hairong Zhang3  Zengyun Hu4  Xinsheng Bian5 
[1] College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China;Department of Water Resources Management, China Yangtze Power Co., Ltd., Yichang, China;Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, Yichang, China;State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China;The Eastern Route of South-to-North Water Diversion Project Jiangsu Water Source Co., Ltd., Nanjing, China;
关键词: flood regime;    evaluation indicators;    temporal trend;    change point;    periodicity;    the upper Yangtze River;   
DOI  :  10.3389/feart.2021.650882
来源: DOAJ
【 摘 要 】

River flooding affects more people worldwide than other natural hazards. Thus, analysis of the changes in flood regime caused by global warming and increasing anthropogenic activities will help us make adaptive plans for future flood management. The nonstationary flood behavior in the upper Yangtze River was examined comprehensively in terms of trend, change point, and periodicity with co-usage of different methods. Results show that there are decreasing tendencies in the corresponding series of annual maximum flood peak flow and flood volume in four out of six control stations, except Pingshan and Wulong stations in the Jinsha River and the Wu River, respectively, and the flood peak occurrence time appears earlier mostly. The uniformity of flood process increases in four main tributaries, while it decreases in mainstream of the Yangtze River (Yichang and Pingshan stations). The rates of both rising limb and recession limb of all the typical flood process flowing through the six stations were analyzed. 77.8% of the rates of rising limb decrease, while 61.1% of the rates of recession limb increase, which is almost consistent with the variation reflected by the uniformity. The change points of most evaluation indicators happened in 1970s–1990s. The first main periodicity of evaluation indicators in Yichang is about 45 years, while that of other stations is about 20 years. Invalidity of stationarity in the flood series can be attributed to the intensified construction on major water conservancy projects, changes of underlying surface, and influences of climatic variables. The contributions of both climatic control and the Three Gorges Dam (TGD) to the variation of the annual flood peak in Yichang station were further quantitatively evaluated, which has verified that the construction of the TGD has played a positive role in peak-flood clipping.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次