期刊论文详细信息
Computational Urban Science
Investigating functional consistency of mobility-related urban zones via motion-driven embedding vectors and local POI-type distributions
Alessandro Crivellari1  Bernd Resch2 
[1] Department of Computer Science and Engineering, Southern University of Science and Technology;Department of Geoinformatics, University of Salzburg;
关键词: Human mobility;    Points of interest;    Functional regions;    Urban areas;    Embeddings;    Neural networks;   
DOI  :  10.1007/s43762-022-00049-8
来源: DOAJ
【 摘 要 】

Abstract Urban morphology and human mobility are two sides of the complex mixture of elements that implicitly define urban functionality. By leveraging the emerging availability of crowdsourced data, we aim for novel insights on how they relate to each other, which remains a substantial scientific challenge. Specifically, our study focuses on extracting spatial-temporal information from taxi trips in an attempt on grouping urban space based on human mobility, and subsequently assess its potential relationship with urban functional characteristics in terms of local points-of-interest (POI) distribution. Proposing a vector representation of urban areas, constructed via unsupervised machine learning on trip data’s temporal and geographic factors, the underlying idea is to define areas as “related” if they often act as destinations of similar departing regions at similar points in time, regardless of any other explicit information. Hidden relations are mapped within the generated vector space, whereby areas are represented as points and stronger/weaker relatedness is conveyed through relative distances. The mobility-related outcome is then compared with the POI-type distribution across the urban environment, to assess the functional consistency of mobility-based clusters of urban areas. Results indicate a meaningful relationship between spatial-temporal motion patterns and urban distributions of a diverse selection of POI-type categorizations, paving the way to ideally identify homogenous urban functional zones only based on the movement of people. Our data-driven approach is intended to complement traditional urban development studies on providing a novel perspective to urban activity modeling, standing out as a reference for mining information out of mobility and POI data types in the context of urban management and planning.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:7次