International Journal of Environmental Research and Public Health | |
Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting | |
MartijnW. Heymans1  SijmenA. Reijneveld2  MarlouL.A. de Kroon2  NienkeH. van Dokkum3  ArendF. Bos3  | |
[1] Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, Location VU, University Medical Center, de Boelelaan 1089a, 1081HV Amsterdam, The Netherlands;Department of Health Sciences, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands;Department of Pediatrics, Division of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; | |
关键词: Keywords: prediction model; developmental surveillance; developmental delay; | |
DOI : 10.3390/ijerph17228341 | |
来源: DOAJ |
【 摘 要 】
Our aim was to develop a prediction model for infants from the general population, with easily obtainable predictors, that accurately predicts risk of future developmental delay at age 4 and then assess its performance. Longitudinal cohort data were used (N = 1983), including full-term and preterm children. Development at age 4 was assessed using the Ages and Stages Questionnaire. Candidate predictors included perinatal and parental factors as well as growth and developmental milestones during the first two years. We applied multiple logistic regression with backwards selection and internal validation, and we assessed calibration and discriminative performance (i.e., area under the curve (AUC)). The model was evaluated in terms of sensitivity and specificity at several cut-off values. The final model included sex, maternal educational level, pre-existing maternal obesity, several milestones (smiling, speaking 2–3 word sentences, standing) and weight for height z score at age 1. The fit was good, and the discriminative performance was high (AUC: 0.837). Sensitivity and specificity were 73% and 80% at a cut-off probability of 10%. Our model is promising for use as a prediction tool in community-based settings. It could aid to identify infants in early life (age 2) with increased risk of future developmental problems at age 4 that may benefit from early interventions.
【 授权许可】
Unknown