期刊论文详细信息
Frontiers in Neuroscience
Relative Weights of Temporal Envelope Cues in Different Frequency Regions for Mandarin Vowel, Consonant, and Lexical Tone Recognition
Gang Feng1  Shouhuan He2  Di Qian3  Yang Guo5  Zhen Zhang6  Lili Xiao6  Yinan Li6  Zhong Zheng6  Chengqi Liu6  Yanmei Feng6  Keyi Li7 
[1] Department of Graduate, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China;Department of Otolaryngology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China;Department of Otolaryngology, Shenzhen Longhua District People’s Hospital, Shenzhen, China;Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China;Ear, Nose, and Throat Institute and Otorhinolaryngology Department, Eye and ENT Hospital of Fudan University, Shanghai, China;Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China;Sydney Institute of Language and Commerce, Shanghai University, Shanghai, China;
关键词: temporal envelope cues;    frequency region;    Mandarin;    vowel;    consonant;    tone;   
DOI  :  10.3389/fnins.2021.744959
来源: DOAJ
【 摘 要 】

Objectives: Mandarin-speaking users of cochlear implants (CI) perform poorer than their English counterpart. This may be because present CI speech coding schemes are largely based on English. This study aims to evaluate the relative contributions of temporal envelope (E) cues to Mandarin phoneme (including vowel, and consonant) and lexical tone recognition to provide information for speech coding schemes specific to Mandarin.Design: Eleven normal hearing subjects were studied using acoustic temporal E cues that were extracted from 30 continuous frequency bands between 80 and 7,562 Hz using the Hilbert transform and divided into five frequency regions. Percent-correct recognition scores were obtained with acoustic E cues presented in three, four, and five frequency regions and their relative weights calculated using the least-square approach.Results: For stimuli with three, four, and five frequency regions, percent-correct scores for vowel recognition using E cues were 50.43–84.82%, 76.27–95.24%, and 96.58%, respectively; for consonant recognition 35.49–63.77%, 67.75–78.87%, and 87.87%; for lexical tone recognition 60.80–97.15%, 73.16–96.87%, and 96.73%. For frequency region 1 to frequency region 5, the mean weights in vowel recognition were 0.17, 0.31, 0.22, 0.18, and 0.12, respectively; in consonant recognition 0.10, 0.16, 0.18, 0.23, and 0.33; in lexical tone recognition 0.38, 0.18, 0.14, 0.16, and 0.14.Conclusion: Regions that contributed most for vowel recognition was Region 2 (502–1,022 Hz) that contains first formant (F1) information; Region 5 (3,856–7,562 Hz) contributed most to consonant recognition; Region 1 (80–502 Hz) that contains fundamental frequency (F0) information contributed most to lexical tone recognition.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次