期刊论文详细信息
Frontiers in Marine Science
A Methodology to Characterize Riverine Macroplastic Emission Into the Ocean
Emilie Strady2  Phuoc-Dan Nguyen3  Xuan-Thanh Bui3  Thuy-Chung Kieu-Le4  Bruno Tassin5  Johnny Gasperi5  Laurent Lebreton6  Matthias Egger7  Anna Schwarz7  Tim van Emmerik7  Michelle Loozen7  Boyan Slat7  Kees van Oeveren7 
[1] CARE, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam;CNRS, IRD, Grenoble INP, IGE, University of Grenoble Alpes, Saint-Martin-d’Hères, France;Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam;Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam;Laboratoire Eau, Environnement, Systèmes Urbains (LEESU) - UMR-MA 102 – UPEC-ENPC-AgroParisTech, Université Paris-Est, Créteil, France;The Modelling House Limited, Raglan, New Zealand;The Ocean Cleanup, Rotterdam, Netherlands;
关键词: plastic;    pollution;    hydrology;    rivers;    macroplastic;    Vietnam;   
DOI  :  10.3389/fmars.2018.00372
来源: DOAJ
【 摘 要 】

Land-based macroplastic is considered one of the major sources of marine plastic debris. However, estimations of plastic emission from rivers into the oceans remain scarce and uncertain, mainly due to a severe lack of standardized observations. To properly assess global plastic fluxes, detailed information on spatiotemporal variation in river plastic quantities and composition are urgently needed. In this paper, we present a new methodology to characterize riverine macroplastic dynamics. The proposed methodology was applied to estimate the plastic emission from the Saigon River, Vietnam. During a 2-week period, hourly cross-sectional profiles of plastic transport were made across the river width. Simultaneously, sub-hourly samples were taken to determine the weight, size and composition of riverine macroplastics (>5 cm). Finally, extrapolation of the observations based on available hydrological data yielded new estimates of daily, monthly and annual macroplastic emission into the ocean. Our results suggest that plastic emissions from the Saigon River are up to four times higher than previously estimated. Importantly, our flexible methodology can be adapted to local hydrological circumstances and data availability, thus enabling a consistent characterization of macroplastic dynamics in rivers worldwide. Such data will provide crucial knowledge for the optimization of future mediation and recycling efforts.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次