Polymers | |
Polyelectrolyte Complexes between Polycarboxylates and BMP-2 for Enhancing Osteogenic Differentiation: Effect of Chemical Structure of Polycarboxylates | |
Tetsuya Yoda1  Masahiko Terauchi1  Atsushi Tamura2  Asato Tonegawa2  Satoshi Yamaguchi2  Nobuhiko Yui2  | |
[1] Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan;Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; | |
关键词: bone morphogenetic protein-2; osteogenic differentiation; polyelectrolyte complex; polycarboxylate; poly(glutamic acid); | |
DOI : 10.3390/polym11081327 | |
来源: DOAJ |
【 摘 要 】
Bone morphogenetic protein 2 (BMP-2) has received considerable attention because of its osteoinductivity, but its use is limited owing to its instability and adverse effects. To reduce the dose of BMP-2, complexation with heparin is a promising approach, because heparin enhances the osteoinductivity of BMP-2. However, the clinical use of heparin is restricted because of its anticoagulant activity. Herein, to explore alternative polymers that show heparin-like activity, four polycarboxylates, poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(aspartic acid) (PAsp), and poly(glutamic acid) (PGlu), were selected and their capability to modulate the osteoinductivity of BMP-2 was evaluated. Dynamic light scattering indicated that these polycarboxylates formed polyelectrolyte complexes with BMP-2. The osteogenic differentiation efficiency of MC3T3-E1 cells treated with the polycarboxylate/BMP-2 complexes was investigated in comparison to that of the heparin/BMP-2 complex. As a result, PGlu/BMP-2 complex showed the highest activity of alkaline phosphatase, which is an early-stage marker of osteogenic differentiation, and rapid mineralization. Based on these observations, PGlu could serve as an alternative to heparin in the regenerative therapy of bone using BMP-2.
【 授权许可】
Unknown