Molecular Therapy: Methods & Clinical Development | |
Chromosome Transplantation: A Possible Approach to Treat Human X-linked Disorders | |
Lucia Sergi Sergi1  Teruhiko Suzuki2  Paolo Vezzoni2  Lucia Susani2  Letizia Straniero2  Stefano Mantero3  Elena Caldana4  Marianna Paulis5  Alessandra Castelli5  Takahiko Hara5  Anna Villa5  Stefano Duga6  Dario Strina6  | |
[1] Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy;Humanitas Clinical and Research Center, Rozzano (MI), Italy;Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy;Humanitas Clinical and Research Center, Rozzano (MI), Italy;National Research Council (CNR)-IRGB/UOS, Milan, Italy;Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; | |
关键词: genomic disorders; induced pluripotent stem cells; genetic therapy; chromosome transfer; chromosome transplantation; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
Many human genetic diseases are associated with gross mutations such as aneuploidies, deletions, duplications, or inversions. For these “structural” disorders, conventional gene therapy, based on viral vectors and/or on programmable nuclease-mediated homologous recombination, is still unsatisfactory. To correct such disorders, chromosome transplantation (CT), defined as the perfect substitution of an endogenous defective chromosome with an exogenous normal one, could be applied. CT re-establishes a normal diploid cell, leaving no marker of the procedure, as we have recently shown in mouse pluripotent stem cells. To prove the feasibility of the CT approach in human cells, we used human induced pluripotent stem cells (hiPSCs) reprogrammed from Lesch-Nyhan (LN) disease patients, taking advantage of their mutation in the X-linked HPRT gene, making the LN cells selectable and distinguishable from the resistant corrected normal cells. In this study, we demonstrate, for the first time, that CT is feasible in hiPSCs: the normal exogenous X chromosome was first transferred using an improved chromosome transfer system, and the extra sex chromosome was spontaneously lost. These CT cells were functionally corrected and maintained their pluripotency and differentiation capability. By inactivation of the autologous HPRT gene, CT paves the way to the correction of hiPSCs from several X-linked disorders.
【 授权许可】
Unknown