期刊论文详细信息
Journal of Marine Science and Engineering
Is the Spatial-Temporal Dependence Model Reliable for the Short-Term Freight Volume Forecast of Inland Ports? A Case Study of the Yangtze River, China
Yue Hu1  Cong Liu2  Chen Chen3  Jing Chen4  Lei Liu4  Yong Zhang4 
[1] College of Transportation Engineering, Tongji University, Shanghai 201804, China;Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland;School of Business Administration, Wuhan Business University, Wuhan 430065, China;School of Transportation, Southeast University, Jiangning District, Nanjing 211189, China;
关键词: freight volume forecast;    spatial-temporal dependence;    machine learning;    time series analysis;    inland ports;   
DOI  :  10.3390/jmse9090985
来源: DOAJ
【 摘 要 】

The purpose of this study is to investigate whether spatial-temporal dependence models can improve the prediction performance of short-term freight volume forecasts in inland ports. To evaluate the effectiveness of spatial-temporal dependence forecasting, the basic time series forecasting models for use in our comparison were first built based on an autoregression integrated moving average model (ARIMA), a back-propagation neural network (BPNN), and support vector regression (SVR). Subsequently, combining a gradient boosting decision tree (GBDT) with SVR, an SVR-GBDT model for spatial-temporal dependence forecast was constructed. The SVR model was only used to build a spatial-temporal dependence forecasting model, which does not distinguish spatial and temporal information but instead takes them as data features. Taking inland ports in the Yangtze River as an example, the results indicated that the ports’ weekly freight volumes had a higher autocorrelation with the previous 1–3 weeks, and the Pearson correlation values of the ports’ weekly cargo volume were mainly located in the interval (0.2–0.5). In addition, the weekly freight volumes of the inland ports were higher depending on their past data, and the spatial-temporal dependence model improved the performance of the weekly freight volume forecasts for the inland river. This study may help to (1) reveal the significance of spatial correlation factors in ports’ short-term freight volume predictions, (2) develop prediction models for inland ports, and (3) improve the planning and operation of port entities.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次