期刊论文详细信息
Biomolecules
Gels of Amyloid Fibers
Xiaojing Yang1  Hang Yin1  Lingwen Cui2  Shaohua Xu2  Ruizhi Wang2 
[1] Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA;;Department of Biomedical &
关键词: protein aggregation;    amyloid plaque;    Alzheimer’s disease;    protein colloids;    dementia;    amyloidosis;    atomic force microscopy;   
DOI  :  10.3390/biom9060210
来源: DOAJ
【 摘 要 】

Protein self-assembly and formation of amyloid fibers is an early event of numerous human diseases. Continuous aggregation of amyloid fibers in vitro produces biogels, which led us to suspect that amyloid plaques and neurofibrillary tangles in Alzheimer’s disease are of biogels in nature. We applied atomic force microscopy, size exclusion chromatography, and differential scanning calorimetry to elucidate the gel’s structure, kinetics of gel formation, and melting point. We found that (1) lysozyme gelation occurs when the protein concentration is above 5 mg/mL; (2) nonfibrous protein concentration decreases and plateaus after three days of gel synthesis reaction; (3) colloidal lysozyme aggregates are detectable by both atomic force microscopy (AFM) and fast protein liquid chromatography (FPLC); (4) the gels are a three-dimensional (3D) network crosslinked by fibers coiling around each other; (5) the gels have a high melting point at around around 110 °C, which is weakly dependent on protein concentration; (6) the gels are conductive under an electric field, and (7) they form faster in the presence than in the absence of salt in the reaction buffer. The potential role of the gels formed by amyloid fibers in amyloidosis, particularly in Alzheimer’s disease was thoroughly discussed, as gels with increased viscosity, are known to restrict bulk flow and then circulation of ions and molecules.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次