期刊论文详细信息
iScience
Virtual metabolic human dynamic model for pathological analysis and therapy design for diabetes
Hiroyuki Kurata1 
[1] Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan;
关键词: Biological Sciences;    Endocrinology;    Mathematical Biosciences;    Metabolomics;    Systems Biology;   
DOI  :  
来源: DOAJ
【 摘 要 】

Summary: A virtual metabolic human model is a valuable complement to experimental biology and clinical studies, because in vivo research involves serious ethical and technical problems. I have proposed a multi-organ and multi-scale kinetic model that formulates the reactions of enzymes and transporters with the regulation of hormonal actions at postprandial and postabsorptive states. The computational model consists of 202 ordinary differential equations for metabolites with 217 reaction rates and 1,140 kinetic parameter constants. It is the most comprehensive, largest, and highly predictive model of the whole-body metabolism. Use of the model revealed the mechanisms by which individual disorders, such as steatosis, β cell dysfunction, and insulin resistance, were combined to cause diabetes. The model predicted a glycerol kinase inhibitor to be an effective medicine for type 2 diabetes, which not only decreased hepatic triglyceride but also reduced plasma glucose. The model also enabled us to rationally design combination therapy.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次