期刊论文详细信息
BMC Nephrology
Excretion of urine extracellular vesicles bearing markers of activated immune cells and calcium/phosphorus physiology differ between calcium kidney stone formers and non-stone formers
Elena M. Wilson1  John C. Lieske1  Sanjay Kumar1  Muthuvel Jayachandran1  Stanley Wang1  Loren P. Herrera Hernandez2  Jiqing Zhang3 
[1] Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic;Department of Laboratory Medicine and Pathology, Mayo Clinic;Department of Urology, Beijing Chaoyang Hospital, Capital Medical University;
关键词: Calcium;    Oxalate;    Urinary extracellular vesicles;    Inflammation;    Phosphorus;    Urinary stone disease;   
DOI  :  10.1186/s12882-021-02417-8
来源: DOAJ
【 摘 要 】

Abstract Backgrounds: Previous studies have demonstrated that excretion of urinary extracellular vesicles (EVs) from different nephron segments differs between kidney stone formers and non-stone formers (NSFs), and could reflect pathogenic mechanisms of urinary stone disease. In this study we quantified selected populations of specific urinary EVs carrying protein markers of immune cells and calcium/phosphorus physiology in calcium oxalate stone formers (CSFs) compared to non-stone formers (NSFs). Methods Biobanked urine samples from CSFs (n = 24) undergoing stone removal surgery and age- and sex- matched NSFs (n = 21) were studied. Urinary EVs carrying proteins related to renal calcium/phosphorus physiology (phosphorus transporters (PiT1 and PiT2), Klotho, and fibroblast growth factor 23 (FGF23); markers associated with EV generation (anoctamin-4 (ANO4) and Huntington interacting protein 1 (HIP1)), and markers shed from activated immune cells were quantified by standardized and published method of digital flow cytometry. Results Urine excretion of calcium, oxalate, phosphorus, and calcium oxalate supersaturation (SS) were significantly higher in CSFs compared to NSFs (P < 0.05). Urinary excretion of EVs with markers of total leukocytes (CD45), neutrophils (CD15), macrophages (CD68), Klotho, FGF23, PiT1, PiT2, and ANO4 were each markedly lower in CSFs than NSFs (P < 0.05) whereas excretion of those with markers of monocytes (CD14), T-Lymphocytes (CD3), B-Lymphocytes (CD19), plasma cells (CD138 plus CD319 positive) were not different between the groups. Urinary excretion of EVs expressing PiT1 and PiT2 negatively (P < 0.05) correlated with urinary phosphorus excretion, whereas excretion of EVs expressing FGF23 negatively (P < 0.05) correlated with both urinary calcium and phosphorus excretion. Urinary EVs with markers of HIP1 and ANO4 correlated negatively (P < 0.05) with clinical stone events and basement membrane calcifications on papillary tip biopsies. Conclusions Urinary excretion of EVs derived from specific types of activated immune cells and EVs with proteins related to calcium/phosphorus regulation differed between CSFs and NSFs. Further validation of these and other populations of urinary EVs in larger cohort could identify biomarkers that elucidate novel pathogenic mechanisms of calcium stone formation in specific subsets of patients.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次