Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki | |
On one generalization of Bessel function | |
Nina A Virchenko1  Maria O Chetvertak1  | |
[1] National Technical University of Ukraine “Kiev Polytechnic Institute”; | |
关键词: bessel function; hypergeometric function; integral transform; | |
DOI : 10.14498/vsgtu1361 | |
来源: DOAJ |
【 摘 要 】
In this paper the generalized Bessel function $J_{\mu ,\omega } ( x )$ is introduced. The function $J_{\mu ,\omega } ( x )$ is given as one solution of the following differential equation: $$ x^2{y}''+x{y}'+\left( {x-\mu ^2} \right)\left( {x+\omega ^2} \right)y=0, \quad \mu , \omega \notin \mathbb Z. $$ The representation of the $J_{\mu ,\omega } ( x )$ by the power series is given. The theorem on integral representations of the function $J_{\mu ,\omega } ( x )$ is established. The main properties of the function $J_{\mu ,\omega } ( x )$ are studied. The integral transforms of Bessel type with the function $J_{\mu ,\omega } ( x )$ is constructed. Formula of inversion of this transform is received.
【 授权许可】
Unknown