期刊论文详细信息
BMC Medical Research Methodology
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
Lorena Álvarez-Rodríguez1  Marcos Ortega1  Joaquim de Moura1  Jorge Novo1 
[1] Centro de Investigación CITIC, Universidade da Coruña;
关键词: CAD system;    Chest X-ray;    COVID-19 screening;    Data analysis;    Deep learning;   
DOI  :  10.1186/s12874-022-01578-w
来源: DOAJ
【 摘 要 】

Abstract Background The health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary involvement in detail, one of the most common resources is the use of different lung imaging modalities (like chest radiography) to explore the possible affected areas. Methods The study of patient characteristics like sex and age in pathologies of this type is crucial for gaining knowledge of the disease and for avoiding biases due to the clear scarcity of data when developing representative systems. In this work, we performed an analysis of these factors in chest X-ray images to identify biases. Specifically, 11 imbalance scenarios were defined with female and male COVID-19 patients present in different proportions for the sex analysis, and 6 scenarios where only one specific age range was used for training for the age factor. In each study, 3 different approaches for automatic COVID-19 screening were used: Normal vs COVID-19, Pneumonia vs COVID-19 and Non-COVID-19 vs COVID-19. The study was validated using two public chest X-ray datasets, allowing a reliable analysis to support the clinical decision-making process. Results The results for the sex-related analysis indicate this factor slightly affects the system in the Normal VS COVID-19 and Pneumonia VS COVID-19 approaches, although the identified differences are not relevant enough to worsen considerably the system. Regarding the age-related analysis, this factor was observed to be influencing the system in a more consistent way than the sex factor, as it was present in all considered scenarios. However, this worsening does not represent a major factor, as it is not of great magnitude. Conclusions Multiple studies have been conducted in other fields in order to determine if certain patient characteristics such as sex or age influenced these deep learning systems. However, to the best of our knowledge, this study has not been done for COVID-19 despite the urgency and lack of COVID-19 chest x-ray images. The presented results evidenced that the proposed methodology and tested approaches allow a robust and reliable analysis to support the clinical decision-making process in this pandemic scenario.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次