期刊论文详细信息
Catalysts
n-Butene Synthesis in the Dimethyl Ether-to-Olefin Reaction over Zeolites
Yusuke Edashige1  Masaru Aoyagi2  Toshiaki Hanaoka2 
[1] Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan;Organic Materials Diagnosis Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima 739-0046, Japan;
关键词: dimethyl ether;    n-butene;    zeolite;    strong acid;    micropore;   
DOI  :  10.3390/catal11060743
来源: DOAJ
【 摘 要 】

Zeolite catalysts that could allow the efficient synthesis of n-butene, such as 1-butene, trans-2-butene, and cis-2-butene, in the dimethyl ether (DME)-to-olefin (DTO) reaction were investigated using a fixed-bed flow reactor. The zeolites were characterized by N2 adsorption and desorption, X-ray diffraction (XRD), thermogravimetry (TG), and NH3 temperature-programmed desorption (NH3-TPD). A screening of ten available zeolites indicated that the ferrierite zeolite with NH4+ as the cation showed the highest n-butene yield. The effect of the temperature of calcination as a pretreatment method on the catalytic performance was studied using three zeolites with suitable topologies. The calcination temperature significantly affected DME conversion and n-butene yield. The ferrierite zeolite showed the highest n-butene yield at a calcination temperature of 773 K. Multiple regression analysis was performed to determine the correlation between the six values obtained using N2 adsorption/desorption and NH3-TPD analyses, and the n-butene yield. The contribution rate of the strong acid site alone as an explanatory variable was 69.9%; however, the addition of micropore volume was statistically appropriate, leading to an increase in the contribution rate to 76.1%. Insights into the mechanism of n-butene synthesis in the DTO reaction were obtained using these parameters.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次