期刊论文详细信息
Sensors
Dual Dynamic Scheduling for Hierarchical QoS in Uplink-NOMA: A Reinforcement Learning Approach
Xiangjun Li1  Jinli Zhai1  Qimei Cui1  Xueqing Huang2 
[1] National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China;New York Institute of Technology, Old Westbury, NY 11568, USA;
关键词: deep deterministic policy gradient (DDPG);    hierarchical QoS;    nonorthogonal multiple access (NOMA);    power allocation;    reinforcement learning (RL);   
DOI  :  10.3390/s21134404
来源: DOAJ
【 摘 要 】

The demand for bandwidth-intensive and delay-sensitive services is surging daily with the development of 5G technology, resulting in fierce competition for scarce radio resources. Power domain Nonorthogonal Multiple Access (NOMA) technologies can dramatically improve system capacity and spectrum efficiency. Unlike existing NOMA scheduling that mainly focuses on fairness, this paper proposes a power control solution for uplink hybrid OMA and PD-NOMA in dual dynamic environments: dynamic and imperfect channel information together with the random user-specific hierarchical quality of service (QoS). This paper models the power control problem as a nonconvex stochastic, which aims to maximize system energy efficiency while guaranteeing hierarchical user QoS requirements. Then, the problem is formulated as a partially observable Markov decision process (POMDP). Owing to the difficulty of modeling time-varying scenes, the urgency of fast convergency, the adaptability in a dynamic environment, and the continuity of the variables, a Deep Reinforcement Learning (DRL)-based method is proposed. This paper also transforms the hierarchical QoS constraint under the NOMA serial interference cancellation (SIC) scene to fit DRL. The simulation results verify the effectiveness and robustness of the proposed algorithm under a dual uncertain environment. As compared with the baseline Particle Swarm Optimization algorithm (PSO), the proposed DRL-based method has demonstrated satisfying performance.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次