期刊论文详细信息
Hemijska Industrija
Biodegradable polyesters based on succinic acid
关键词: Enzymatic degradation;    Aliphatic copolyesters;    Poly(butylene succinate);    Poly(butylene succinate-co-butylene adipate);    Poly(butylene succinate-co-butylene fumarate);    Lipase;   
DOI  :  10.2298/HEMIND0311526N
来源: DOAJ
【 摘 要 】

Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu)4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate), PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation was not enhanced suggesting that not only the chemical structure and molecular stiffness but also the morphology of the spherulites influenced the biodegradation properties.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次