期刊论文详细信息
Sensors
Measurement of Three-Dimensional Structural Displacement Using a Hybrid Inertial Vision-Based System
BrettA. Story1  Yasha Zeinali1  Xinxiang Zhang2  Dinesh Rajan2 
[1] Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX 75205, USA;Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA;
关键词: three-dimensional;    static structural displacement measurement;    structural health monitoring;    out-of-plane;    vision-based;    camera calibration;    camera movement compensation;    motion sensor;   
DOI  :  10.3390/s19194083
来源: DOAJ
【 摘 要 】

Accurate three-dimensional displacement measurements of bridges and other structures have received significant attention in recent years. The main challenges of such measurements include the cost and the need for a scalable array of instrumentation. This paper presents a novel Hybrid Inertial Vision-Based Displacement Measurement (HIVBDM) system that can measure three-dimensional structural displacements by using a monocular charge-coupled device (CCD) camera, a stationary calibration target, and an attached tilt sensor. The HIVBDM system does not require the camera to be stationary during the measurements, while the camera movements, i.e., rotations and translations, during the measurement process are compensated by using a stationary calibration target in the field of view (FOV) of the camera. An attached tilt sensor is further used to refine the camera movement compensation, and better infers the global three-dimensional structural displacements. This HIVBDM system is evaluated on both short-term and long-term synthetic static structural displacements, which are conducted in an indoor simulated experimental environment. In the experiments, at a 9.75 m operating distance between the monitoring camera and the structure that is being monitored, the proposed HIVBDM system achieves an average of 1.440 mm Root Mean Square Error (RMSE) on the in-plane structural translations and an average of 2.904 mm RMSE on the out-of-plane structural translations.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次