期刊论文详细信息
Applied Sciences
Product Quality Prediction for Wire Electrical Discharge Machining with Markov Transition Fields and Convolutional Long Short-Term Memory Neural Networks
Jehn-Ruey Jiang1  Cheng-Tai Yen1 
[1] Department of Computer Science and Information Engineering, National Central University, Taoyuan City 32001, Taiwan;
关键词: Markov transition field;    convolutional neural network;    long short-term memory;    wire electrical discharge machining;    surface roughness;   
DOI  :  10.3390/app11135922
来源: DOAJ
【 摘 要 】

This paper proposes a wire electrical discharge machining (WEDM) product quality prediction method, called MTF-CLSTM, to integrate the Markov transition field (MTF) and the convolutional long short-term memory (CLSTM) neural network. The proposed MTF-CLSTM method can accurately predict WEDM workpiece surface roughness right after manufacturing by collecting and analyzing static machining parameters and dynamic manufacturing conditions. The highly accurate prediction is due to the following two reasons. First, MTF can transform data into images to extract data temporal information and state transition probability information. Second, the CLSTM neural network can extract image spacial features and temporal relationship of data that are separated far apart. In short, MTF-CLSTM predicts WEDM workpiece surface roughness with the MTF model and the CLSTM neural network using static machining parameters and dynamic manufacturing conditions. MTF-CLSTM is compared with 10 related research studies in many aspects. There is only one existing method that is like MTF-CLSTM to predict WEDM workpiece surface roughness by using static machining parameters and dynamic manufacturing conditions. Experiments are conducted to evaluate MTF-CLSTM performance to show that MTF-CLSTM significantly outperforms the existing method in terms of the prediction mean absolute percentage error.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次