期刊论文详细信息
Entropy
Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario
LorenzoM. Procopio1  Nadia Belabas1  JuanAriel Levenson1  Marco Enríquez2  Francisco Delgado2 
[1] Centre for Nanoscience and Nanotechnology, C2N, CNRS, Université Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France;Tecnologico de Monterrey, School of Engineering and Science, Atizapán, México 52926, Mexico;
关键词: quantum control;    indefinite causal order;    quantum switch;    holevo information;   
DOI  :  10.3390/e21101012
来源: DOAJ
【 摘 要 】

In quantum Shannon theory, transmission of information is enhanced by quantum features. Up to very recently, the trajectories of transmission remained fully classical. Recently, a new paradigm was proposed by playing quantum tricks on two completely depolarizing quantum channels i.e., using coherent control in space or time of the two quantum channels. We extend here this control to the transmission of information through a network of an arbitrary number N of channels with arbitrary individual capacity i.e., information preservation characteristics in the case of indefinite causal order. We propose a formalism to assess information transmission in the most general case of N channels in an indefinite causal order scenario yielding the output of such transmission. Then, we explicitly derive the quantum switch output and the associated Holevo limit of the information transmission for N = 2 , N = 3 as a function of all involved parameters. We find in the case N = 3 that the transmission of information for three channels is twice that of transmission of the two-channel case when a full superposition of all possible causal orders is used.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次