期刊论文详细信息
Entropy
Analytical Solutions of the Electrical RLC Circuit via Liouville–Caputo Operators with Local and Non-Local Kernels
José Francisco Gómez-Aguilar1  Ricardo Fabricio Escobar-Jiménez2  Dumitru Baleanu3  Maysaa Mohamed Al Qurashi4  Marco Antonio Taneco-Hernández5  Victor Fabian Morales-Delgado5 
[1] CONACYT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca 62490, Mexico;Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca 62490, Mexico;Department of Mathematics and Computer Science, Faculty of Art and Sciences, Cankaya University, Ankara 06530, Turkey;Mathematics Department, King Saud University, Riyadh 12364, Saudi Arabia;Unidad Académica de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria, Chilpancingo 39087, Mexico;
关键词: fractional-order circuits;    Liouville–Caputo fractional operator;    Caputo–Fabrizio fractional operator;    Atangana–Baleanu fractional operator;   
DOI  :  10.3390/e18080402
来源: DOAJ
【 摘 要 】

In this work we obtain analytical solutions for the electrical RLC circuit model defined with Liouville–Caputo, Caputo–Fabrizio and the new fractional derivative based in the Mittag-Leffler function. Numerical simulations of alternative models are presented for evaluating the effectiveness of these representations. Different source terms are considered in the fractional differential equations. The classical behaviors are recovered when the fractional order α is equal to 1.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次