Journal of Composites Science | |
Performance of Composite Metal Foam Armors against Various Threat Sizes | |
Afsaneh Rabiei1  Jacob Marx1  Marc Portanova2  | |
[1] Advanced Materials Research Lab, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA;Aviation Development Directorate (ADD), U.S. Army Combat Capabilities Development Command, Aviation & Missile Center, Fort Eustis, VA 23604, USA; | |
关键词: composite metal foam; ballistic impact; metal foam structure; hard armor; | |
DOI : 10.3390/jcs4040176 | |
来源: DOAJ |
【 摘 要 】
The ballistic capabilities of composite metal foam (CMF) armors were experimentally tested against a 14.5 × 114 mm B32 armor-piercing incendiary (API) and compared to various sizes of armor-piercing (AP) ballistic threats, ranging from a 7.62 to 12.7 mm. Three different arrangements of layered hard armors were designed and manufactured using ceramic faceplates (in one layer, two layers or multiple tiles), a combination of ceramic and steel face sheets, with a single-layered CMF core, and a thin aluminum backing. The performance of various CMF armor designs against the 14.5 mm rounds are compared to each other and to the performance of the rolled homogeneous armor standard to identify the most efficient design for further investigations. The percentage of kinetic energy absorbed by the CMF layer in various armor arrangements and in tests against various threat sizes was calculated and compared. It appears that the larger the threat size, the more efficient the CMF layer will be due to a greater number of hollow metal spheres that are engaged in absorbing the impact energy. The results from this study will help to model and predict the performance of CMF armors against various threat sizes and impact energies.
【 授权许可】
Unknown