| Cancers | |
| In Silico Designed Gain-of-Function Variants of Complement C2 Support Cytocidal Activity of Anticancer Monoclonal Antibodies | |
| Patrycja Koszałka1  Alan Majeranowski1  Marcin Okrój1  Grzegorz Stasiłojć1  Aleksandra Urban1  Anna Felberg1  Michał Taszner2  Jan M. Zaucha2  | |
| [1] Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland;Department of Hematology and Transplantology, Medical University of Gdańsk, Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland; | |
| 关键词: complement system; CLL; NHL; rituximab; obinutuzumab; | |
| DOI : 10.3390/cancers14051270 | |
| 来源: DOAJ | |
【 摘 要 】
The molecular target for the classical complement pathway (CP) is defined by surface-bound immunoglobulins. Therefore, numerous anticancer monoclonal antibodies (mAbs) exploit the CP as their effector mechanism. Conversely, the alternative complement pathway (AP) is spontaneously induced on the host and microbial surfaces, but complement inhibitors on host cells prevent its downstream processing. Gain-of-function (GoF) mutations in the AP components that oppose physiological regulation directly predispose carriers to autoimmune/inflammatory diseases. Based on the homology between AP and CP components, we modified the CP component C2 so that it emulates the known pathogenic mutations in the AP component, factor B. By using tumor cell lines and patient-derived leukemic cells along with a set of clinically approved immunotherapeutics, we showed that the supplementation of serum with recombinant GoF C2 variants not only enhances the cytocidal effect of type I anti-CD20 mAbs rituximab and ofatumumab, but also lowers the threshold of mAbs necessary for the efficient lysis of tumor cells and efficiently exploits the leftovers of the drug accumulated in patients’ sera after the previous infusion. Moreover, we demonstrate that GoF C2 acts in concert with other therapeutic mAbs, such as type II anti-CD20, anti-CD22, and anti-CD38 specimens, for overcoming cancer cells resistance to complement attack.
【 授权许可】
Unknown