期刊论文详细信息
Frontiers in Veterinary Science
Modeling the Accuracy of Two in-vitro Bovine Tuberculosis Tests Using a Bayesian Approach
Julio Alvarez1  Andres Perez2  Ximena Salaberry3  Alejandra Suanes3  Alvaro Nunez3  Andres Gil4  Catalina Picasso-Risso4 
[1] Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain;Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States;División Laboratorios Veterinarios “Miguel C. Rubino”, Ministerio de Ganadería, Agricultura y Pesca, Montevideo, Uruguay;Facultad de Veterinaria, Universidad de la Republica, Montevideo, Uruguay;VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain;
关键词: latent class analysis;    diagnosis;    interferon-gamma release assay;    elisa;    chronically infected;    Uruguay;   
DOI  :  10.3389/fvets.2019.00261
来源: DOAJ
【 摘 要 】

Accuracy of new or alternative diagnostic tests is typically estimated in relation to a well-standardized reference test referred to as a gold standard. However, for bovine tuberculosis (bTB), a chronic disease of cattle, affecting animal and public health, no reliable gold standard is available. In this context, latent-class models implemented using a Bayesian approach can help to assess the accuracy of diagnostic tests incorporating previous knowledge on test performance and disease prevalence. In Uruguay, bTB-prevalence has increased in the past decades partially because of the limited accuracy of the diagnostic strategy in place, based on intradermal testing (caudal fold test, CFT, for screening and comparative cervical test, CCT, for confirmation) and slaughter of reactors. Here, we evaluated the performance of two alternative bTB-diagnostic tools, the interferon-gamma assay, IGRA, and the enzyme-linked immunosorbent assay (ELISA), which had never been used in Uruguay in the absence of a gold standard. In order to do so animals from two heavily infected dairy herds and tested with CFT-CCT were also analyzed with the IGRA using two antigens (study 1) and the ELISA (study 2). The accuracy of the IGRA and ELISA was assessed fitting two latent-class models: a two test-one population model (LCA-a) based on the analysis of CFT/CFT-CCT test results and one in-vitro test (IGRA/ELISA), and a one test-one population model (LCA-b) using the IGRA or ELISA information in which the prevalence was modeled using information from the skin tests. Posterior estimates for model LCA-a suggested that IGRA was as sensitive (75–78%) as the CFT and more sensitive than the serial use of CFT-CCT. Its specificity (90–96%) was superior to the one for the CFT and equivalent to the use of CFT-CCT. Estimates from LCA-b models consistently yielded lower posterior Se estimates for the IGRA but similar results for its Sp. Estimates for the Se (52% 95%PPI:44.41-71.28) and the Sp (92% 95%PPI:78.63–98.76) of the ELISA were however similar regardless of the model used. These results suggest that the incorporation of IGRA for detection of bTB in highly infected herds could be a useful tool to improve the sensitivity of the bTB-control in Uruguay.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次