Frontiers in Chemistry | |
Structural, Functional, and Evolutionary Characterization of Major Drought Transcription Factors Families in Maize | |
Prasanta K. Dash1  Atmakuri R. Rao2  Prashant A. Jain3  Shikha Mittal4  Mallana G. Mallikarjuna4  Pooja Banduni4  Nepolean Thirunavukkarasu5  | |
[1] Bioinformatics, J.I.B.B., Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India;Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India;;Department of Computational Biology &Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India;National Research Centre on Plant Biotechnology, New Delhi, India; | |
关键词: drought; gene expression; gene interaction; maize; transcription factors; | |
DOI : 10.3389/fchem.2018.00177 | |
来源: DOAJ |
【 摘 要 】
Drought is one of the major threats to the maize yield especially in subtropical production systems. Understanding the genes and regulatory mechanisms of drought tolerance is important to sustain the yield. Transcription factors (TFs) play a major role in gene regulation under drought stress. In the present study, a set of 15 major TF families comprising 1,436 genes was structurally and functionally characterized. The functional annotation indicated that the genes were involved in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed for individual TF and combined TF families. Phylogenetic analysis clustered the genes into specific and mixed groups. Gene structure analysis revealed that more number of genes were intron-rich as compared to intron-less. Drought-responsive cis-regulatory elements such as ABREA, ABREB, DRE1, and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. Protein-protein interaction network of 269 drought-responsive genes belonging to different TFs has been provided. The information generated on structural and functional characteristics, expression, and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to breed drought-tolerant genotypes in maize.
【 授权许可】
Unknown