期刊论文详细信息
Journal of Information and Telecommunication
Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data
Van-Hoa Nguyen1  Phuoc-Hai Huynh1  Thanh-Nghi Do2 
[1] An Giang University;Can Tho University;
关键词: deep convolutional neural network;    support vector machines;    rna-sequencing gene expression;    classification;   
DOI  :  10.1080/24751839.2019.1660845
来源: DOAJ
【 摘 要 】

In recent years, cancer is one of the leading causes of death worldwide. Therefore, there are more and more studies that have been conducted to find effective solutions to diagnose and treat cancer. However, there are still many challenges in cancer treatment because possible causes of cancer are genetic disorders or epigenetic alterations in the cells. RNA sequencing is a powerful technique for gene expression profiling in model organisms and it is able to produce information for diagnosing cancer at the biomolecular level. Gene expression data are used to build a classification model which supports treatment of cancer. Nevertheless, its characteristic is very-high-dimensional data which lead to over-fitting issue of classifying model. In this paper, we propose a new gene expression classification model of support vector machines (SVM) using features extracted by deep convolutional neural network (DCNN). In our approach, the DCNN extracts latent features from gene expression data, then they are used in conjunction with SVM that efficiently classify RNA-Seq gene expression data. Numerical test results on RNA-Seq gene expression datasets from The Cancer Genome Atlas (TCGA) illustrate that our proposed algorithm is more accurate than state-of-the-art classifying models including DCNN, SVM and random forests.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次