Pathogens | |
Monitoring Glycolysis and Respiration Highlights Metabolic Inflexibility of Cryptococcus neoformans | |
Desmarini Desmarini1  JulianneT. Djordjevic1  Cecilia Li1  TaniaC. Sorrell1  Sophie Lev1  David Liuwantara2  WayneJ. Hawthorne3  | |
[1] Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia;Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia;Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia; | |
关键词: Cryptococcus neoformans; seahorse analyzer; ECAR; OCR; metabolic flux; glycolysis; | |
DOI : 10.3390/pathogens9090684 | |
来源: DOAJ |
【 摘 要 】
Cryptococcus neoformans is a human fungal pathogen that adapts its metabolism to cope with limited oxygen availability, nutrient deprivation and host phagocytes. To gain insight into cryptococcal metabolism, we optimized a protocol for the Seahorse Analyzer, which measures extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) as indications of glycolytic and respiratory activities. In doing so we achieved effective immobilization of encapsulated cryptococci, established Rotenone/Antimycin A and 2-deoxyglucose as effective inhibitors of mitochondrial respiration and glycolysis, respectively, and optimized a microscopy-based method of data normalization. We applied the protocol to monitor metabolic changes in the pathogen alone and in co-culture with human blood-derived monocytes. We also compared metabolic flux in wild-type C. neoformans, its isogenic 5-PP-IP5/IP7-deficient metabolic mutant kcs1∆, the sister species of C. neoformans, Cryptococcus deuterogattii/VGII, and two other yeasts, Saccharomyces cerevisiae and Candida albicans. Our findings show that in contrast to monocytes and C. albicans, glycolysis and respiration are tightly coupled in C. neoformans and C. deuterogattii, as no compensatory increase in glycolysis occurred following inhibition of respiration. We also demonstrate that kcs1∆ has reduced metabolic activity that correlates with reduced mitochondrial function. Metabolic inflexibility in C. neoformans is therefore consistent with its obligate aerobe status and coincides with phagocyte tolerance of ingested cryptococcal cells.
【 授权许可】
Unknown