期刊论文详细信息
Ecology and Evolution
Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios
Liu Linshan1  Wei Bo1  Gu Changjun1  Zhang Binghua1  Cui Bohao1  Zhang Yili1  Yu Haibin2  Wang Xilong3  Yangjin Zhuoga3  Tu Yanli3 
[1] Key Laboratory of Land Surface Pattern and Simulation Institute of Geographic Sciences and Natural Resources ResearchCAS Beijing China;School of Life Sciences Guangzhou University Guangzhou China;Tibet Plateau Institute of Biology Lhasa China;
关键词: Ageratina adenophora;    climate change;    ecological niche modeling;    invasive alien species;    MaxEnt;   
DOI  :  10.1002/ece3.7974
来源: DOAJ
【 摘 要 】

Abstract Aim Invasive alien species (IAS) threaten ecosystems and humans worldwide, and future climate change may accelerate the expansion of IAS. Predicting the suitable areas of IAS can prevent their further expansion. Ageratina adenophora is an invasive weed over 30 countries in tropical and subtropical regions. However, the potential suitable areas of A. adenophora remain unclear along with its response to climate change. This study explored and mapped the current and future potential suitable areas of Ageratina adenophora. Location Global. Taxa Asteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as Crofton weed. Methods Based on A. adenophora occurrence data and climate data, we predicted its suitable areas of this weed under current and future (four RCPs in 2050 and 2070) by MaxEnt model. We used ArcGIS 10.4 to explore the potential suitable area distribution characteristics of this weed and the “ecospat” package in R to analyze its altitudinal distribution changes. Results The area under the curve (AUC) value (>0.9) and true skill statistics (TSS) value (>0.8) indicated excelled model performance. Among environment factors, mean temperature of coldest quarter contributed most to the model. Globally, the suitable areas for A. adenophora invasion decreased under climate change scenarios, although regional increases were observed, including in six biodiversity hotspot regions. The potential suitable areas of A. adenophora under climate change would expand in regions with higher elevation (3,000–3,500 m). Main conclusions Mean temperature of coldest quarter was the most important variable influencing the potential suitable area of A. Adenophora. Under the background of a warming climate, the potential suitable area of A. adenophora will shrink globally but increase in six biodiversity hotspot regions. The potential suitable area of A. adenophora would expand at higher elevation (3,000–3,500 m) under climate change. Mountain ecosystems are of special concern as they are rich in biodiversity and sensitive to climate change, and increasing human activities provide more opportunities for IAS invasion.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次