期刊论文详细信息
Micromachines
Coupling Mechanism Analysis and Fabrication of Triaxial Gyroscopes in Monolithic MIMU
Dunzhu Xia1  Lei Xu1 
[1] Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
关键词: fully decoupled;    tri-axis gyroscope;    micro inertial measurement unit (MIMU);    decoupling beams;    coupling stiffness;    fabrication imperfection;    fabrication process;   
DOI  :  10.3390/mi8100310
来源: DOAJ
【 摘 要 】

A novel fully decoupled micro inertial measurement unit (MIMU) is presented in this paper. The proposed MIMU structure, mostly focusing on the gyroscope unit, is highly symmetrical and can be limited to an area of 10,000 μm × 10,000 μm. Both the tri-axis gyroscope and tri-axis accelerometer structures are fabricated on the same single silicon chip, which can differentially detect three axes’ angular velocities and linear accelerated velocities at the same time. By elaborately arranging different decoupling beams, anchors and sensing frames, the drive and sense modes of the tri-axis gyroscope are fully decoupled from each other. Several dynamic models, including decoupling beams with fabrication imperfections, are established for theoretical analysis. The numerical simulation made by MATLAB shows the structural decoupling of three sense modes, and indicates that the key decoupling beams, which affect the quadrature error, can be improved in design. The whole fabrication process, including silicon on glass (SOG) process, dry/wet etching as well as the methods for improving the fabrication quality, is then shown. Experiments for mode frequency and quality factors of four modes (drive, yaw, pitch and roll) have been performed, and are found to be 455 (6950.2 Hz), 66 (7054.4 Hz), 109 (7034.2 Hz) and 107 (7040.5 Hz) respectively. The analysis and experiment both prove that this novel MIMU has the potential value of further intensive investigation.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次