Boletim Cearense de Educação e História da Matemática | |
O paradoxo de Bertrand e os axiomas de Kolmogorov | |
Mariana Feiteiro Cavalari1  Nancy Chachapoyas1  José Vidarte1  | |
[1] Universidade Federal de Itajubá - UNIFEI; | |
关键词: Probabilidade; Axiomas de Kolmogorov; História da Matemática; Formação de Professores; Proposta Didática; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
A importância de incluir aspectos da História da Matemática (HM) na formação inicial de professores e formas de incluí-los têm sido objeto de estudo de diversos pesquisadores. Dentre as diversas possibilidades de inclusão de temáticas relativas à História da Matemática nestes cursos, podemos destacar a apresentação de elementos da HM nas disciplinas da área de Matemática. Diante deste contexto, realizamos o presente trabalho buscando descrever uma proposta didática, que apresenta elementos da História da Matemática para o ensino de Probabilidade, em cursos de formação de professores de matemática. Nossa proposta é composta por quatro momentos, sendo que no primeiro discutimos os conceitos de Probabilidade Clássica e Geométrica, bem como, diferenças entre eventos improváveis e impossíveis. No segundo, apresentamos o Paradoxo de Bertrand e propomos uma atividade sobre ele. Posteriormente, indicamos que seja realizada uma discussão acerca de consequências deste problema para o desenvolvimento da Matemática. Por fim, expomos as ideias de Kolmogorov, bem como suas relações com a Probabilidade Clássica e o Paradoxo de Bertrand. Nestes momentos, buscamos apresentar aspectos da História da Matemática de diferentes formas, já que ora são apresentados fatos e informações históricas e ora são abordados problemas e definições traduzidos dos originais de Pierre-Simon de Laplace (1749-1827), Joseph Louis François Bertrand (1822-1900) e Andrey Nikolaevich Kolmogorov (1903-1987), com vistas a ensinar o conteúdo previsto na disciplina de Probabilidade. Neste sentido, a História da Matemática na proposta elaborada pode contribuir para problematizar o conteúdo abordado, possibilitar a ampliação do conhecimento matemático e permitir discussões que podem auxiliar um repensar sobre a natureza da Matemática.
【 授权许可】
Unknown