期刊论文详细信息
BMC Bioinformatics
Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter
Jing Qiu1  Qiming Fu1  Ye Tang1  Hongjie Wu1  Haiou Li1  Weizhong Lu1  Hongmei Huang1 
[1] School of Electronic and Information Engineering, Suzhou University of Science and Technology;
关键词: RNA;    Secondary structure prediction;    Recurrent neural network;    LSTM;    Pseudoknots;   
DOI  :  10.1186/s12859-019-3258-7
来源: DOAJ
【 摘 要 】

Abstract Background RNA secondary structure prediction is an important issue in structural bioinformatics, and RNA pseudoknotted secondary structure prediction represents an NP-hard problem. Recently, many different machine-learning methods, Markov models, and neural networks have been employed for this problem, with encouraging results regarding their predictive accuracy; however, their performances are usually limited by the requirements of the learning model and over-fitting, which requires use of a fixed number of training features. Because most natural biological sequences have variable lengths, the sequences have to be truncated before the features are employed by the learning model, which not only leads to the loss of information but also destroys biological-sequence integrity. Results To address this problem, we propose an adaptive sequence length based on deep-learning model and integrate an energy-based filter to remove the over-fitting base pairs. Conclusions Comparative experiments conducted on an authoritative dataset RNA STRAND (RNA secondary STRucture and statistical Analysis Database) revealed a 12% higher accuracy relative to three currently used methods.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次