期刊论文详细信息
Remote Sensing
Evaluation of the Performance of Multi-Source Satellite Products in Simulating Observed Precipitation over the Tensift Basin in Morocco
Wiam Salih1  Terence Epule Epule1  Abdelghani Chehbouni1 
[1] International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco;
关键词: precipitation;    Tensift basin;    remote sensing;    spatiotemporal;    satellite products;    PERSIANN CDR;   
DOI  :  10.3390/rs14051171
来源: DOAJ
【 摘 要 】

The Tensift basin in Morocco is prominent for its ecological and hydrological diversity. This is marked by rivers flowing into areas such as Ourika. In addition to agriculture, the basin is a hub of variable land use systems. As such, it is important to gain a better understanding of the relationship between simulated and observed precipitation in this region to be able to better understand the role of precipitation in impacting the climate and water resources in the basin. This study evaluates the performance of multi-source satellite products against weather station precipitation in the basin. The satellite-product-based data were first collected for seven satellite products, namely PERSIANN, PERSIANN CDR, TRMM3B42, ARC2, RFE2, CHIRPS, and ERA5 (simulated precipitation) from the following repositories (CHRS iRain, RainSphere, NASA, EUMETSAT, NOAA, FEWS NET, ECMWF). Precipitation observation data from six weather stations, located at Tachedert (2343 m), Imskerbour (1404 m), Asni (1170 m), Grawa (550 m), Agdal (489 m), and Agafay (487 m), at different altitudes, latitudes, and temporal scales (1D, 1M, 1Y), over the period 13 May 2007 and 31 September 2019 over the Tensift basin were collected. The data were compared and analyzed through inferential statistics such as the Nash–Sutcliffe efficiency coefficient, bias, root-mean-square error (RMSE), root-mean-square deviation (RMSD), the standard deviation, the correlation coefficient (R), and the coefficient of determination (R2) and visualized through Taylor diagrams and scatterplots to visualize the closeness between the seven satellite products and the observed precipitation data. A second analysis was carried out on the monthly precipitation, resulting from the six weather stations, and based on the standardized precipitation index (SPI) to determine the onset, duration, and magnitude of the meteorological drought. The results show that PERSIANN CDR performs best and is more reliable regarding its ability to simulate precipitation over the basin. This is seen as PERSIANN CDR has significant rates for the different statistics (Bias: −0.05 (Daily Asni), RMSE: 2.86 (Daily Agdal), R: 0.83, R2:0.687 (Monthly Agdal)). The results also show that there are no major differences between the observed weather station and the satellite precipitation data. The best performance was attributed to PERSIANN CDR (for monthly and annual precipitation at all altitudes and for daily precipitation at high altitudes). However, most of the time, this product records low or negative Nash values (−6.06 (Annual Grawa)), due to the insufficient weather station data in the study area (Tensift). It was observed that TRMM overestimates precipitation during heavy precipitation and underestimates it during low precipitation. This makes it important for the latter observations to be viewed with caution due to the quality of annual comparison results and underscores the need to develop more efficient precipitation comparison approaches and datasets. Additionally, the performance of the satellite products is better at low altitudes and during wet years. Finally, it was concluded from the SPI that Tensift region has experienced 13 drought periods over the study period, with the longest event of 12 months being from Marsh 2015 to February 2016, and the most intense event with the highest drought severity (19.6) and the lowest SPI value (−2.66) being in 2019.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次