期刊论文详细信息
Parasites & Vectors
Insecticide resistance status in Anopheles gambiae (s.l.) in coastal Kenya
Charles M. Mbogo1  Joseph M. Mwangangi1  Daniel N. Munywoki1  Ephantus J. Muturi2  Elizabeth D. Kokwaro3 
[1] Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute;Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture;Department of Zoological Sciences, Kenyatta University;
关键词: Anopheles;    Insecticide resistance;    Kdr;    Sodium channel;    Coastal Kenya;   
DOI  :  10.1186/s13071-021-04706-5
来源: DOAJ
【 摘 要 】

Abstract Background The rapid and widespread evolution of insecticide resistance has emerged as one of the major challenges facing malaria control programs in sub-Saharan Africa. Understanding the insecticide resistance status of mosquito populations and the underlying mechanisms of insecticide resistance can inform the development of effective and site-specific strategies for resistance prevention and management. The aim of this study was to investigate the insecticide resistance status of Anopheles gambiae (s.l.) mosquitoes from coastal Kenya. Methods Anopheles gambiae (s.l.) larvae sampled from eight study sites were reared to adulthood in the insectary, and 3- to 5-day-old non-blood-fed females were tested for susceptibility to permethrin, deltamethrin, dichlorodiphenyltrichloroethane (DDT), fenitrothion and bendiocarb using the standard World Health Organization protocol. PCR amplification of rDNA intergenic spacers was used to identify sibling species of the An. gambiae complex. The An. gambiae (s.l.) females were further genotyped for the presence of the L1014S and L1014F knockdown resistance (kdr) mutations by real-time PCR. Results Anopheles arabiensis was the dominant species, accounting for 95.2% of the total collection, followed by An. gambiae (s.s.), accounting for 4.8%. Anopheles gambiae (s.l.) mosquitoes were resistant to deltamethrin, permethrin and fenitrothion but not to bendiocarb and DDT. The L1014S kdr point mutation was detected only in An. gambiae (s.s.), at a low allelic frequency of 3.33%, and the 1014F kdr mutation was not detected in either An. gambiae (s.s.) or An. arabiensis. Conclusion The findings of this study demonstrate phenotypic resistance to pyrethroids and organophosphates and a low level of the L1014S kdr point mutation that may partly be responsible for resistance to pyrethroids. This knowledge may inform the development of insecticide resistance management strategies along the Kenyan Coast.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次