期刊论文详细信息
Cancers
Cigarette Smoke Containing Acrolein Upregulates EGFR Signaling Contributing to Oral Tumorigenesis In Vitro and In Vivo
Hong-Chieh Tsai1  Chien-Hung Lee2  Tsung-Yun Liu3  Han-Hsing Tsou3  Chung-Ji Liu4  Chiao-Ting Chu5  Hsiao-Wei Cheng5  Hsiang-Tsui Wang5 
[1] Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 112, Taiwan;Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
关键词: oral squamous cell carcinoma;    cigarette;    acrolein;    EGFR amplification;    EGFR signaling pathway;    cetuximab;   
DOI  :  10.3390/cancers13143544
来源: DOAJ
【 摘 要 】

Oral squamous cell carcinoma (OSCC) accounts for 80–90% of all intraoral malignant neoplasms. The single greatest risk factor for oral cancer is tobacco use, including cigarettes, cigars, chewing tobacco, and snuff. Aberrations of the epidermal growth factor receptor (EGFR) pathway features prominently in oral tumorigenesis and progression. It was shown that cigarette smoking (CS) is associated with worse prognosis in OSCC patients and overexpression of EGFR in tumor tissue. However, the mechanism by which cigarette smoking induced EGFR pathway activation remains to be fully elucidated. Acrolein, an IARC group 2A carcinogen, is a highly reactive aldehyde found in CS. Here we report that acrolein is capable of inducing tumorigenic transformation in normal human oral keratinocytes (NOK). The acrolein-transformed NOK cells showed EGFR copy number amplification, increased EGFR expression, and activation of downstream ERK and AKT signaling pathway. No p53 mutations were observed in acrolein-transformed NOK cells. Inhibiting EGFR pathway using an anti-EGFR antibody, cetuximab, inhibits tumor growth. Furthermore, by examining tissue sample from patients, we found an increased EGFR copy number was positively associated with acrolein-induced DNA damages in OSCC patients. Taken together, our results indicate that acrolein is important in tumorigenic transformation through amplification of EGFR and activating the downstream signaling pathway, contributing to oral carcinogenesis. This is the first study to provide molecular evidence showing that CS containing acrolein contributes to EGFR amplification in OSCC.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次