Mathematics | |
Exploring an Efficient POI Recommendation Model Based on User Characteristics and Spatial-Temporal Factors | |
Chonghuan Xu1  Dongsheng Liu2  Xinyao Mei3  | |
[1] School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China;School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China;School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China; | |
关键词: POI recommendation; user preference; user influence; forgetting characteristic; trajectory; | |
DOI : 10.3390/math9212673 | |
来源: DOAJ |
【 摘 要 】
The advent of mobile scenario-based consumption popularizes and gradually maturates the application of point of interest (POI) recommendation services based on geographical location. However, the insufficient fusion of heterogeneous data in the current POI recommendation services leads to poor recommendation quality. In this paper, we propose a novel hybrid POI recommendation model (NHRM) based on user characteristics and spatial-temporal factors to enhance the recommendation effect. The proposed model contains three sub-models. The first model considers user preferences, forgetting characteristics, user influence, and trajectories. The second model studies the impact of the correlation between the locations of POIs and calculates the check-in probability of POI with the two-dimensional kernel density estimation method. The third model analyzes the influence of category of POI. Consequently, the above results were combined and top-K POIs were recommended to target users. The experimental results on Yelp and Meituan data sets showed that the recommendation performance of our method is superior to some other methods, and the problems of cold-start and data sparsity are alleviated to a certain extent.
【 授权许可】
Unknown