Biosensors | |
CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements | |
German Spangenberg1  Bikram Pratap Banerjee2  Surya Kant2  | |
[1] Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia;Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia; | |
关键词: internet of things; Raspberry Pi; LiDAR; GNSS; high-throughput plant phenotyping; precision agriculture; | |
DOI : 10.3390/bios12010016 | |
来源: DOAJ |
【 摘 要 】
The phenotypic characterization of crop genotypes is an essential, yet challenging, aspect of crop management and agriculture research. Digital sensing technologies are rapidly advancing plant phenotyping and speeding-up crop breeding outcomes. However, off-the-shelf sensors might not be fully applicable and suitable for agricultural research due to the diversity in crop species and specific needs during plant breeding selections. Customized sensing systems with specialized sensor hardware and software architecture provide a powerful and low-cost solution. This study designed and developed a fully integrated Raspberry Pi-based LiDAR sensor named CropBioMass (CBM), enabled by internet of things to provide a complete end-to-end pipeline. The CBM is a low-cost sensor, provides high-throughput seamless data collection in field, small data footprint, injection of data onto the remote server, and automated data processing. The phenotypic traits of crop fresh biomass, dry biomass, and plant height that were estimated by CBM data had high correlation with ground truth manual measurements in a wheat field trial. The CBM is readily applicable for high-throughput plant phenotyping, crop monitoring, and management for precision agricultural applications.
【 授权许可】
Unknown