期刊论文详细信息
Frontiers in Computational Neuroscience
Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks
Jesus A Garrido1  Alberto eAntonietti2  Giancarlo eFerrigno2  Alessandra ePedrocchi2  Claudia eCasellato2  Egidio eD‘Angelo3 
[1] IRCCS Istituto Neurologico Nazionale C. Mondino;Politecnico di Milano;University of Pavia;
关键词: motor learning;    Long Term Plasticity;    cerebellar model;    Distributed plasticity;    Neurorobot;   
DOI  :  10.3389/fncom.2015.00024
来源: DOAJ
【 摘 要 】

The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次