Sensors | |
Impacts of Residual Self-Interference, Hardware Impairment and Cascade Rayleigh Fading on the Performance of Full-Duplex Vehicle-to-Vehicle Relay Systems | |
Young-Il Kim1  Huu Minh Nguyen2  Le The Dung3  Taejoon Kim3  Ba Cao Nguyen3  | |
[1] Electronics and Telecommunications Research Institute, Daejeon 34129, Korea;Faculty of Radio Communications, Telecommunications University, Khanh Hoa 650000, Vietnam;School of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Korea; | |
关键词: full-duplex vehicle-to-vehicle communication; cascade Rayleigh fading; hardware impairment; outage probability; system throughput; ergodic capacity; | |
DOI : 10.3390/s21165628 | |
来源: DOAJ |
【 摘 要 】
In practice, self-interference (SI) in full-duplex (FD) wireless communication systems cannot be completely eliminated due to imperfections in different factors, such as the SI channel estimation and hardware circuits. Therefore, residual SI (RSI) always exists in FD systems. In addition, hardware impairments (HIs) cannot be avoided in FD systems due to the non-ideal characteristics of electronic components. These issues motivate us to consider an FD-HI system with a decode-and-forward (DF) relay that is applied for vehicle-to-vehicle (V2V) communication. Unlike previous works, the performance of the proposed FD-HI-V2V system is evaluated over cascaded Rayleigh fading channels (CRFCs). We mathematically obtain the exact closed-form expressions of the outage probability (OP), system throughput (ST), and ergodic capacity (EC) of the proposed FD-HI-V2V system under the joint and crossed effects of the RSI, HIs, and CRFCs. We validate all derived expressions via Monte-Carlo simulations. Based on these expressions, the OP, ST, and EC of the proposed FD-HI-V2V system are investigated and compared with other related systems, such as ideal hardware (ID) and half-duplex (HD) systems, as well as a system over traditional Rayleigh fading channels (RFCs), to clearly show the impacts of negative factors.
【 授权许可】
Unknown