期刊论文详细信息
Materials
An Investigation of the Ground Walnut Shells’ Addition Effect on the Properties of the Fly Ash-Based Geopolymer
João Castro-Gomes1  Barbara Kozub2 
[1] C-MADE Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal;Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland;
关键词: fly ash;    geopolymer;    ground walnut shells;    efflorescence;    thermal conductivity;    water absorption;   
DOI  :  10.3390/ma15113936
来源: DOAJ
【 摘 要 】

The development of geopolymers is in line with the requirements of sustainable development. Creating a new type of material from various industrial and bio-based wastes and by-products can lead to reduced energy consumption, reduced waste generation, reduced global CO2 emissions, as well as reduced resource extraction of natural resources. In this study, geopolymer composites based on class F fly ash with the addition of fine quartz sand and ground walnut shells used as a substitute for sand were examined. The study focused on investigating the effects of different weight percentages of ground walnut shells and quartz sand on the density and strength properties, including compressive and flexural strength, thermal conductivity, efflorescence formation, and water absorption of the fly ash-based geopolymer composites. The microstructure of the studied geopolymers was also analyzed using a scanning electron microscope (SEM). It was observed that the addition of ground walnut shells contributes to the decrease in density and mechanical properties, increase in absorption properties, and decrease in porosity of fly ash-based geopolymers. Furthermore, the addition of ground walnut shells allows for a significant reduction in efflorescence on the surface of the tested geopolymer composites. Moreover, partial or complete replacement of sand by ground walnut shells in geopolymer composites based on fly ash allows for a significant reduction in their thermal conductivity, which makes it possible to use these composites as insulation materials.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:6次