| Electronic Journal of Differential Equations | |
| Positive solutions and global bifurcation of strongly coupled elliptic systems | |
| 关键词: Elliptic system; bifurcation; positive solutions; | |
| DOI : | |
| 来源: DOAJ | |
【 摘 要 】
In this article, we study the existence of positive solutions forthe coupled elliptic systemegin{gather*}-Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \-Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \u =v=0 quad ext{on }partial Omega,end{gather*}under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular.We also consider the systemegin{gather*}-Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \-Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \u =v=0 quad ext{on }partial Omega,end{gather*}and prove a Rabinowitz global bifurcation type theorem to this system.
【 授权许可】
Unknown