期刊论文详细信息
Engineering Science and Technology, an International Journal
A sustainable approach for the utilization of PPE biomedical waste in the construction sector
K.M. Mini1  Harish T. Mohan2  Karingamanna Jayanarayanan3 
[1] Center of Excellence in Advanced Materials and Green Technologies, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641 112, India;Ammachi Labs, Amritapuri, Amrita Vishwa Vidyapeetham, 690525, India;Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641 112, India;
关键词: Covid-PPE waste;    Sustainable waste management;    Construction materials;    Recycled plastic composite;   
DOI  :  
来源: DOAJ
【 摘 要 】

One of the major challenges the COVID-19 pandemic has posed is the disposal of huge volumes of biomedical waste. It is the need of the hour to find out methods to handle the waste generated and explore novel and sustainable ways for their disposal. Personal Protective Equipment (PPE) is the main medical waste generated during the pandemic and may continue to accumulate in the post-pandemic era. This paper portrays a study on generating construction material composites from PPE waste along with the sand fillers. The work has been carried out with two different sand, River sand and Manufactured sand, in three different filler ratios. The different properties such as tensile, compression, and flexural strength of the prepared composite are detailed and compared with the existing construction materials. Durability properties such as acid resistance and moisture absorption have been studied to validate the efficacy of the developed material in the construction sector. It is observed that the PPE waste composite displays superior performance in compression, tension and flexure while compared to the other construction materials like mud bricks and cement blocks. The water absorption and acid degradation are minimal, as a result, its strength is not affected after exposure to such adverse conditions. The thermal conductivity of the composite is found to be less compared to the conventional concrete which makes it an ideal choice in tropical areas as thermal insulation material. Moving forward, this study is expected to set a new sustainable approach to utilize biomedical plastics waste to substitute cement-based construction material and hence aid a negative carbon cycle.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次