期刊论文详细信息
iScience
Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion
Oscar Castillo1  Sonia Pérez-Yáñez2  Amaia M. Goitandia3  Estibaliz Aranzabe3  Garikoitz Beobide4  Jonathan Albo5  Adrián Angulo-Ibáñez5 
[1] Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain;Corresponding author;Nanotechnologies Unit, Fdn Tekniker, Inaki Goenaga 5, Eibar 20600, Spain;;Department of Chemical &;Surface Chemistry &
关键词: chemistry;    catalysis;    engineering;   
DOI  :  
来源: DOAJ
【 摘 要 】

Summary: Using a photocatalytic window can simplify the design of an optofluidic microreactor, providing also a more straightforward operation. Therefore, the development of TiO2 coatings on glass substrates seems appealing, although a priori they would imply a reduced accessible area compared with supported nanoparticle systems. Considering this potential drawback, we have developed an endurable photocatalytic window consisting on an inner protective SiO2 layer and an outer mesoporous anatase layer with enhanced surface area and nanoscopic crystallite size (9–16 nm) supported on a glass substrate. The designed photocatalytic windows are active in the CO2-to-methanol photocatalytic transformation, with maximum methanol yield (0.52 μmol·h−1·cm−2) for greatest porosity values and minimum crystallite size. Compared with benchmark supported nanoparticle systems, the nanoscopic thickness of the coatings allowed to save photoactive material using only 11–22 μg·cm−2, while its robustness prevented the leaching of active material, thus avoiding the decay of performance at long working periods.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次