期刊论文详细信息
Materials
Early Hydration Heat of Calcium Sulfoaluminate Cement with Influences of Supplementary Cementitious Materials and Water to Binder Ratio
Yuzhang Liu1  Guoju Ke1  Jun Zhang2 
[1] Department of Civil Engineering, Tsinghua University, Beijing, 100084, China;Key Laboratory of Safety and Durability of Civil Engineering, China Education Ministry, Beijing, 100084, China;
关键词: calcium sulfoaluminate cement;    hydration heat;    supplementary cementitious materials;    water to cement (binder) ratio;   
DOI  :  10.3390/ma14030642
来源: DOAJ
【 摘 要 】

Compared to ordinary Portland cement (OPC), calcium sulfoaluminate cement (CSA) displays very early-age strength and faster heat-releasing rate during hydration. In the present paper, the early hydration heat of CSA paste with influences of supplementary cementitious materials (SCMs) and water to cement (or binder) ratio (w/c) is systematically studied by measuring the heat-releasing rate using a calorimeter. Three traditional SCMs—silica fume (SF), fly ash (FA) and ground granulated blast furnace slag (SL)—were used in the study. A water to cement or binder ratio (w/c) between 0.19 and 0.73 was used in the mixtures. The results show that three exothermic peaks were presented during hydration—dissolution exothermic peak and two reaction exothermic peaks. With the w/c of 0.3, the first and second reaction peaks of the CSA paste are as high as 17.8 times and 4.1 times that of OPC paste, and the occurring time is much earlier than that of the OPC paste. The second reaction peak appears earlier, and the third reaction peak appears later in the pastes with addition of SF than in those without SF. Decreasing w/c can greatly reduce the two reaction peaks of the paste, and it looks that there is a critical value of w/c between 0.24 and 0.30. Above the critical value, the effect of w/c is minor, and below that the influence is obvious. An optimal use of SCMs in CSA pastes under different w/c can greatly decrease the heat releasing while maintaining the required strength.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次